

 1

Gem Drive – Programming Guide

Gem Drive
Programming Guide

 2

Gem Drive – Programming Guide

WARNING

This is a general manual describing a series of servo amplifiers having output capability suitable for driving AC
brushless sinusoidal servo motors.

Instructions for storage, use after storage, commissioning as well as all technical details require the
MANDATORY reading of the manual before getting the amplifiers operational.

Please see GD1 Installation Guide for the installation and the GD1 User Guide for the operation of the amplifier
(commissioning, configuration…).

Maintenance procedures should be attempted only by highly skilled technicians having good knowledge
of electronics and servo systems with variable speed (EN 60204-1 standard) and using proper test
equipment.

The conformity with the standards and the "CE" approval is only valid if the items are installed according to the
recommendations of the amplifier manuals. Connections are the user's responsibility if recommendations and
drawings requirements are not met.

INFRANOR does not assume any responsibility for any physical or material damage due to improper handling or
wrong descriptions of the ordered items.
Any intervention on the items, which is not specified in the manual, will immediately cancel the warranty.

Infranor reserves the right to change any information contained in this manual without notice.

 © INFRANOR, June 2008. All rights reserved.
Issue: 1.1

!

ELIMINATION
In order to comply with the 2002/96/EC directive of the European Parliament and of the Council of
27 January 2003 on waste electrical and electronic equipment (WEEE), all INFRANOR devices
have got a sticker symbolizing a crossed-out wheel dustbin as shown in Appendix IV of the
2002/96/EC Directive.
This symbol indicates that INFRANOR devices must be eliminated by selective disposal and not
with standard waste.

Any contact with electrical parts, even after power down, may involve physical damage.
Wait for at least 5 minutes after power down before handling the amplifiers (a residual voltage of several
hundreds of volts may remain during a few minutes).

ESD INFORMATION (ElectroStatic Discharge)
INFRANOR amplifiers are conceived to be best protected against electrostatic discharges. However,
some components are particularly sensitive and may be damaged if the amplifiers are not properly
stored and handled.
STORAGE

- The amplifiers must be stored in their original package.
- When taken out of their package, they must be stored positioned on one of their flat metal

surfaces and on a dissipating or electrostatically neutral support.
- Avoid any contact between the amplifier connectors and material with electrostatic potential

(plastic film, polyester, carpet…).
HANDLING

- If no protection equipment is available (dissipating shoes or bracelets), the amplifiers must
be handled via their metal housing.

- Never get in contact with the connectors.

http://www.infranor.fr//products.htm

 3
Contents

Gem Drive – Programming Guide

Contents

CONTENTS... 3
CHAPTER 1. GEM DRIVE PROGRAMMING ... 5

1. INTRODUCTION ... 5
2. PROGRAMMING STRUCTURE .. 5

2.1. Fast Cyclical Task: FCT.. 5
2.2. User Cyclical Task: UCT... 5
2.3. MoVement Task: MVT .. 5

CHAPTER 2. INTEGRATED DEVELOPMENT ENVIRONMENT ... 6
1. INTRODUCTION ... 6
2. PROJECT MANAGEMENT .. 6
3. PROGRAMMING ENVIRONMENT INTERFACE ... 7

3.1. File Menu Commands... 8
3.2. Edit Menu Commands... 9
3.3. View Menu Commands... 11
3.4. Program Menu Commands... 12
3.5. Autocompletion ... 13

4. DRIVE PARAMETERS: EEDS, MNEMONIC, INDEX/SUBINDEX .. 14
5. MAKE A NEW USER PROGRAM .. 14

Step 1: Create a New User Program ... 14
Step 2: Edit and Add Project Source Files... 17
Step 3: Customize the user program configuration ... 20
Step 4: Build and correct a User Program: Program Compilation ... 20
Step 5: Load the generated building output into the drive ... 22
Step 6: Start the program execution .. 22
Step 7: Finally, monitor the program execution ... 22

CHAPTER 3. ELEMENTS OF THE PROGRAMMING LANGUAGE: IEC 1131-3 23
1. OVERVIEW.. 23
2. USER PROGRAM ORGANIZATION... 23
3. PROGRAMMING LANGUAGE INSTRUCTION LIST .. 25
4. PROGRAMMING LANGUAGE REFERENCE ... 27

4.1. Comment... 27
4.2. Data Type.. 27
4.3. Constants .. 27
4.4. User Variables... 27

4.4.1 User Variable Naming .. 27
4.4.2 User Variable Type .. 28
4.4.3 User Variable declaration... 28
4.4.4 Array Variable .. 29
4.4.5 User Names Report ... 29
4.4.6 Local axis parameters versus remote device objects (SDO): ap, rdo, wdo 31

4.5. Assignment ... 32
4.6. Saving / Restoring user variables ... 32
4.7. Language Operators ... 33

4.7.1 Arithmetic Operators .. 33
4.7.2 Comparison Operators... 34
4.7.3 Bits Handling .. 34

4.8. Conditional Statement: if_then_else ... 36
4.9. Iteration Statement (Loop): while, for... 38

4.9.1 Count Controlled Loop ... 38
4.9.2 Condition Controlled Loop.. 39

4.10. Flow Control instructions: exit, goto label, return, halt .. 39
4.10.1 "exit" statement .. 39
4.10.2 "goto label" statement .. 40
4.10.3 "return" statement .. 40
4.10.4 "halt" statement .. 40

 4

Gem Drive – Programming Guide

Contents

4.11. Wait a delay time... 41
4.12. Wait until Condition ... 41
4.13. Start / Stop cyclical tasks .. 42
4.14. Math functions ... 42

4.14.1 ABS ..42
4.14.2 SQRT ...43
4.14.3 SIN ...43
4.14.4 COS ...44
4.14.5 ATAN..44

4.15. Main block: Begin, End.. 45
4.16. Function: Definition, call, arguments, parameters, return ... 46

 5
Chapter 1 – Gem Drive programming

Gem Drive – Programming Guide

Chapter 1. Gem Drive Programming

1. Introduction
The Gem Drive is the newest INFRANOR product. One of the differences with the former Infranor
drive ranges is its programmability. A basic programming language was defined for this purpose. This
gives the Gem Drive more autonomy. This programming language is based on IEC 1131-3 syntax.

To make system integration easy, Gem Drive offers a comprehensive and powerful high-level
application programming interface, as well as our Gem Drive Studio for its setting, tuning and
programming. These user friendly software tools are designed to help the user getting up-and-running
quickly.

2. Programming structure
When a user program is defined for an axis, it may contain maximum three tasks:

 MoVement Task : MVT

 Fast Cyclical Task : FCT

 User Cyclical Task : UCT

Only the MVT task is mandatory. The drive multitask kernel will execute all the tasks simultaneously.

2.1. Fast Cyclical Task: FCT
The « Fast Cyclical Task » or FCT is a very fast cyclical task. It is in correlation with regulation loops.
As the Gem Drive position loop is sampled at 500µs the code size must be reduced to 40 basic
operations. Blocking instructions or temporization is prohibited as well.

2.2. User Cyclical Task: UCT
The « User Cyclical Task » is less time critical than FCT. This task allows the user to cyclically execute
larger codes. The task sample is fixed by the user according to the application need. Nevertheless, to
avoid the system locking, blocking instructions and temporization are also prohibited for this task.

2.3. MoVement Task: MVT
Contrarily to the above ones, the « Movement Task » is executed as a background task. Without any
temporal restriction, all language operations are allowed.

 6

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

Chapter 2. Integrated Development Environment

1. Introduction
Gem Drive Studio is an intuitive Windows® based, Integrated Development Environment (IDE) for
developing motion applications. It is dedicated to the newest generation of INFRANOR programmable
drives, called Gem Drive. The IDE provides flexible project management environment making the
system easy to program.

2. Project management
A project is designed in a single entity for all user applications. It is organized by axis. For each axis,
the user can setup the drive parameters and, at need, make an application program with an unique
software. Gem Drive Studio includes also diagnostic tools like the oscilloscope, helping the user
during the whole development process. This section will deal with the programming tools only. This
includes:

• Edit text files. From the IDE, the user can create and modify source. The IDE provides
extensive editing features such as Undo/Redo, Copy/Paste Find and Go To Line.

• Define and manage project program. Within the IDE, the user specifies the files that the
compiler Tool processes when building application projects. He can create this project
definition once or modify it to meet changing development needs.

• The IDE provides dialogs through which the user specifies options for the compiler Tool.
These options control how the tool processes inputs and generates outputs. The user can
define these options once or modify them to meet changing development needs.

• View and respond to project build results. The user can then go to the line of a compilation
error message within a source file.

• Once the program successfully built, an executable output is generated. The user can then
load it into the target drive.

• In the drive, the executable program can then be launched, depending on the initial
configuration. The program execution may be controlled later by using the execution control
tool from the PC.

• Finally, the monitoring tool helps the user to monitor the loaded program execution.

All dialog windows are easy-to-use and make configuring, changing and managing projects easy.
Commands for programming the axes in the Gem Drive Studio environment are located at five
places:
- The File menu,
- The Edit menu,
- The View menu
- The Program menu,
- The Short-cut menu, which is accessible with left and right mouse button clicks in the Project
navigator window.

 7
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

The project operations available at these places are as follows:

• “File Menu Commands”
This pull-down menu lets you handle or create a new project, as well as to handle source files for axis
programming.

• “Edit Menu Commands”
This pull-down menu provides the user with all what he needs when editing source files.

• “View Menu Commands”
This pull-down menu includes some helpful commands for the program editor.

• “Program Menu Commands”
This pull-down menu allows the user to handle a user program, to control its building, loading and then
executing and monitoring.

• “Short-Cut Menu Commands”
From the Program menu, left and right mouse button clicks on the program items of the project
navigator offer the user a direct access to the programming windows.

3. Programming environment interface
User programs can be created, viewed or modified by using the IDE editor. This is a powerful editor
including a lot of interesting features helping the user to develop complex applications. The main
editor features are:

 Language syntax highlighting

 OLE Drag and Drop

 Bookmarks

 Standard editing functionalities such as cut, copy and paste, find and replace, undo
and redo.

The Gem Drive Studio environment commands are available through the menus shown in Figure 3-1.

Figure 3-1: Gem Drive Studio Menus.

8

Gem Drive – Programming Guide

Chapter 2 - Integrated Development Environment

3.1. File Menu Commands
The GDS File Menu is shown in Figure 3-2. By using this menu, the user can create a new program
file, open an existing one or save file changes. He can also open a list of files by using a drag-and-
drop method applied to files dragged e.g. from a Windows Explorer and dropped on Gem Drive
Studio.

Figure 3-2: GDS File Menu.

An edited file can be exported to html format by using the “Export File to HTML” command. As
programs are edited with syntax coloring, the html format allows keeping the program’s syntaxic color,
giving the user comprehensible printable programs. Programs can also be viewed by external
Windows applications like “Microsoft Windows Explorer”.

The “Print File” command is used to print an active file. This command opens a Print dialog window
where the user can select a destination printer and specify the range of pages to be printed, the
number of copies and other printer setup options.

Most recently used files are listed at the bottom of the File Menu. The list contains the last four
documents opened in the order last opened, first listed. Each file can be opened by clicking on its
name within the list.

Use the “Exit” command to end your environment session. The IDE environment will prompt you to
save any modified documents or project changes.

Direct access to most recently opened files

Create a new file

Open an existing file

Close the edited file

Save the modified file

Save the current file to a new file name

Export the edited file to html format

Print the selected file

Exit GDS

 9
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

3.2. Edit Menu Commands
The Gem Drive Studio environment Edit Menu provides most standard windows edit commands. The
Edit contains the commands that appear in Figure 3-3:

Figure 3-3: GDS Edit Menu.

Use the multilevel “Undo” command (Ctrl Z), to reverse the last editing action and use the “Redo”
command (Ctrl Y), to reverse the previous “Undo” commands in reverse order.

The “Cut/Copy/Past” commands perform the standard tasks of cutting, copying text to the clipboard
and pasting from the clipboard contents into the document at its insertion point.

With the “Select All“command (Ctrl A), the user can select all the document text before cutting or
copying for example.

The “Find“commands (Ctrl F…) are used to search a text or a regular expression in the active
document.

 Figure 3-4: GDS Find dialog box.

Reverse previous edit operation

Reverse undo operation

Move selected text to the clipboard

Copy selected text to the clipboard

Paste clipboard text into the file

Select all text in document

Find text and place bookmarks

Find previous occurrence of text
Find next occurrence of text

Find and replace text

Move the cursor to a text line

Toggle (add or remove) bookmark
Go to next bookmark
Go to previous book mark
Clear all bookmarks

 10 Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

This dialog box allows the user to set the “Find What” text, case sensitivity and search direction
features for the Find command. The “Wrap Around” selection lets the user wrap around the end of
the file.

The user can also set bookmarks by using the “Mark All” command. This lets the user mark all
instances of text, wherever they occur, in his code (see explanation below).

The “Replace“ command (Ctrl H) is used to replace a specified text with a given one.

Figure 3-5: GDS Replace dialog box.

Regular expressions are non-alphabetic characters that are used to control a search in Find/Replace
operations as indicated in the table below:

. Matches any character
\(Marks the start of a region for tagging a match.
\) Marks the end of a tagged region.

\n
Where n is 1 through 9 refers to the first through nine tagged regions when replacing. For
example, if the search string was Axis\([1-9]\)XXX and the replace string was
Slave\1YYY, when applied to Axis2XXX this would generate Slave2YYY.

\< Matches the start of a word.
\> Matches the end of a word.

\x Allows to use a character x that would otherwise have a special meaning. For example, \[
would be interpreted as [and not as the start of a character set.

[...] Indicates a set of characters, for example, [abc] means any of the characters a, b or c.
Ranges can also be used, e.g. [a-z] for any lower case character.

[^...] The complement of the characters in the set. For example, [^A-Za-z] means any character
except an alphabetic character.

^ Matches the start of a line (unless used inside a set. See above).
$ Matches the end of a line.

* Matches 0 or more times. For example, Axis2*_S matches Axis_S, Axis2_S,
Axis22_S, Saaam Axis222_S and so on.

+ Matches 1 or more times. For example, DInput1+_M matches DInput1_M, DInput11_M,
and so on.

Table 3-1: Regular Expression Operators.

 11
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

The “Go To Line“ command (Ctrl G), is used to move the cursor to the specified line and/or column
number in the active document window. This is helpful when searching, for example, an error line after
a program compilation.

Figure 3-6 : Goto line dialog box.

Using Bookmarks
Bookmarks allows marking instances of text wherever they occur in the code. The user defines
bookmarks by using the “Toggle Bookmark” in the Edit Menu or with the “Find” dialog box, “Mark
All” button (see above). For instance, if the user wants to see every instance where he uses MyVar in
his code, he can Find the first occurrence of MyVar, Mark All, and then quickly jump forward or
backward through his file by using “Next Bookmark”/“Previous Bookmark” to see every occurrence
of MyVar. Bookmarks are indicated by a on the left of the editor window, but the user has to
previously check the “Bookmarks” item in the View Menu. The “Clear All Bookmarks“ command is
used to clear all bookmarks.

3.3. View Menu Commands
This menu allows to configure the editor display.

Figure 3-7: GDS View Menu.

The “Word Wrap“ command allows the control of the line wrapping. When the user enables line
wrapping, lines wider than the window width are continued on the following lines. Lines are broken
after space or tab characters. The horizontal scroll bar does not appear when wrap mode is on. By
default, line wrapping is off.

Use the “Line Numbers“ command to display Line Numbers and the “Bookmarks“ command to
display Bookmarks in the left margin of the text. The current line and column are also shown in the
status bar of the GDS main window when the editor is active.

Line Word Wrapping

Show Line numbers

Show Bookmarks

 12

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

3.4. Program Menu Commands
This menu provides all programming commands for the selected axis.

Figure 3-8: GDS Program Menu.

The “Programming Tool“ command opens the Programming tool window while the “User Names
Viewer Tool“ command is used to view user variables window (see more information in section 5).

 “Add Files“ and “Remove File“ commands have to be used for adding/removing files to/from the
user program. To remove a file, select it first in the navigator window.

The “Build“ (F5) command compiles all user program files and generate the executable output file.

Use the “Program Output Options“ command to configure the output window display as the text font
and colors, while the “File Editor Options“ command provides you the possibility to configure the
style of different elements of the file editing as keywords, numbers font and colors… (see Figure 3-10).

 Figure 3-9: GDS Output Window Configuration.

Open the Programming Tool

View the user variables window

Add Files to the user program

Remove the selected file

Build the user program

Configure the output window

Configure the file editor

 13
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

Figure 3-10: GDS File Editor Setting.

3.5. Autocompletion
Autocompletion displays a list box showing likely identifiers based upon the user's typing.
Autocompletion is launched by pressing “Ctrl+Space”. The user chooses the currently selected item
by pressing the tab or return key. The pop-up list will be then cancelled and the selected text from the
autocompletion list will be inserted at the file cursor position.

The autocompletion list contains all language keywords, drive parameters and user variable names
that the user can insert into the selected file. Remember that it depends on the selected axis EEDS
(see next section).

 14

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

4. Drive parameters: EEDS, Mnemonic, Index/SubIndex
Programming the Gem Drive is mainly based on its parameters and user variables handling.
Nevertheless, the drive programming language offers the user all he needs to structure his program
tasks. The access to the drive parameters or the user variables in the user program must be easy and
without any ambiguity. Therefore, all drive parameters are organized clearly and user friendly in a
special structure which is called EEDS (Extended Electronic Data Sheet). This is an extension to the
CANopen EDS specification.

The EEDS file is in XML format and can be viewed by any XML editor, e.g. Microsoft Explorer®.

At a project creation with Gem Drive Studio, an EEDS file must be selected for each axis integrated in
the application.

The drive parameters are structured in groups and sub-groups. (Each parameter can be accessed by
using its EEDS Mnemonic called “ParameterName” or by its Index/SubIndex address. Ex: The CAN
communication cycle period parameter can be accessed by “Period” mnemonic or by the 0x1006,0x00
address.

5. Make a new user program
Although there are many ways to go about developing programs in the Gem Drive Studio
environment, all program developments within the environment should include, for each axis, the
following steps:

• “Step 1: Create a New Program”

• “Step 2: Edit and Add Project Source Files”

• “Step 3: Customize the user program configuration”

• “Step 4: Build and correct a user program” on page

• “Step 5: Load the generated building output into the drive”

• “Step 6: start the program execution”

• “Step 7: and finally monitor the program execution”

By following these steps, the user's projects will be built consistently and accurately with minimum
project management. This process reduces the development time and lets the user concentrate on
actual code development.

Step 1: Create a New User Program
Because all development in the Gem Drive Studio environment occurs within a project, creating a
project is the first step in the application development process. The user has then to add to the project
the axes involved in the application. This procedure is not described in this section.

When a new axis is added to the project, an axis item is added in the project navigator window with
several sub-items which are organized in a way to facilitate the axis management. Axis programming
is grouped under “Device Programming” item.

 15
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

At its creation, the user program is empty by default.

 Figure 4-1: Project structure at its creation.

To go on with the next steps, the user must open the Gem Drive Studio “Programming Tool” by
clicking on the project navigator “Device Programming” item or “User Program Files” sub-item (see
Figure 4-1) or by selecting “Programming Tool” in the “Program” menu.

Figure 4-2: Program Menu.

 16

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

The “Programming Control” tool is the window dialog which allows the user to manage the axis
program:

Figure 4-3: Programming Control Tool.

 17
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

Step 2: Edit and Add Project Source Files
The user can now add to the user program the source files involved in the application. He can edit
new files by using the “editor” tool or use existing files.

The user can edit a new file:

1. From a File Menu: New Source File (see Figure 4-4),

2. From these shortcuts:

Figure 4-4: Gem Drive Studio File Menu.

The Edit Menu provides extensive editing features such as Undo/Redo, Copy/Paste Find and Go To
Line to help the user when editing a source file.

Ctrl Na. Keyboard Shortcut:

b. Accelerator Keys: Alt F NThen

 18

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

 Figure 4-5. Edit Menu.

File and output window text can also be customized by configuring their options in the Program Menu
(see Figure 4-2).

Once the source files created, the user can add them to the project. The user program may contain up
to three files per axis, one for each task. Only the “MVT” task is mandatory.

To add a file to the project, the user can use one of the following methods:

1. Right click in the project navigator window and then select “Add Source File” in the popup
menu (see Figure 4-6)

2. Select “Add File” from the environment “Program Menu” (see Figure 4-2).
The environment displays the file Open dialog, prompting the user to select a file to be added to the
project.

 19
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

Figure 4-6: Add/Remove a file to/from a project.

The type of a source file depends on its extension, as follows:

1. “mvt” for the MVT task,

2. “fct” for the FCT task and

3. “uct” for the UCT task.

The user can then edit the file(s) added to the project as required. To open a source file with the Gem
Drive Studio editor, he can either:

1. Double-click on a document file icon in the project navigator or

2. Open a source file from a File Menu: Open Source File (see Figure 4-4) or

3. Use the following shortcuts:

The user can still remove from a project a previously added file. He must at first select it by clicking on
its project navigator icon (see Figure 4-2) and then:

1. Right click in the project navigator window and then select “Remove Selected Source File” in
the popup menu (see Figure 4-6) or

2. Select “Remove File” from the environment “Program Menu” (see Figure 4-2).

Ctrl Oa. Keyboard Shortcut:

b. Accelerator Keys: Alt F OThen

 20

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

Step 3: Customize the user program configuration
Once the user has added the project source files, he can set any necessary custom build project
options. Note that this step is optional if default option settings are used. Configuration setting is made
in the “Program Configuration” frame of the Programming Tool (see Figure 4-3). It consists of the UCT
cycle in ms and the tasks starting mode. At power ON, the user can choose, for each task, if it must
start automatically or if he will start it later on from the PC by using either the “Program Execution
Control” frame of the Programming Tool (see Figure 4-3) or the START/STOP statements in the
program (see section 4.13).

Step 4: Build and correct a User Program: Program Compilation
The user can now build the program output file from the created project by using any of the following
methods:

1. Build axis program from a Program Menu: Build (see Figure 4-2) or

2. Use the following shortcuts:

By invoking this command, the compiler will check a syntaxic and semantic correctness of a user
program. Any possible message errors are displayed in the Programming Tool output window, see the
example below:

Figure 4-7: Error example.

F5a. Keyboard Shortcut:

b. Accelerator Keys: Alt P BThen

c. Programming Control Tool Icon:

 21
Chapter 2 – Integrated Development Environment

Gem Drive – Programming Guide

As we can see, we are trying to initialize a not declared variable. The compiler will report an error
message with the source line and a description of the error. Note that in the editor window, all
unknown names are in black, giving a visible programme checking before its compilation.

Figure 4-8: Compiler error message report.

The user can go to the error source line by either:

1. double clicking on the error line in the Programming Tool output window (see Figure 4-8) or

2. using the go to line command:

a. Goto Line Command from a Edition Menu: Go To Line (see Figure 4-5) or

b.

Figure 4-9: Go To Line dialog.

Ctrl GKeyboard Shortcut:

 22

Gem Drive – Programming Guide

Chapter 2 – Integrated Development Environment

Step 5: Load the generated building output into the drive
When the user program is correct, the compiler generates a unique executable file called
USERPROG.OUT which can be then loaded into the drive.

The user has to use the Programming Tool program transfer button (see Figure 4-3).

If an executable file is already loaded into the drive, the user has to confirm its deletion. If the user
answers OK, an indication message will be displayed in the Programming Tool during the program
loading.

Step 6: Start the program execution
To start a loaded program, the user must use the Programming Tool start program button (see
Figure 4-3). This will stop the currently executed program if any and then launch the new one. The
user will be asked for confirmation. The program tasks start immediately or not, depending on the
program initial configuration. The user can see the current program execution status in the “Program
Execution Control” frame of the Programming Tool.

 Figure 4-10: User program execution control.

The user can, at any time, use this window to manually start or stop each task.

Step 7: Finally, monitor the program execution
By starting a user program execution, possible execution errors are displayed in this Programming
Tool window. When the error occurs, the corresponding led becomes red.

 Figure 4-11: User program error monitor.

 23

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Chapter 3. Elements of the
programming language: IEC 1131-3

1. Overview
The programming language defined for programming the Gem Drive is a specific language made by
INFRANOR. It is a BASIC language following the IEC 1131-3 syntax. So, users who are familiar with
the IEC 1131-3 PLC languages will quickly get up programming by using this language. It is an easy
structured language which allows the user to make from simple to very complex application programs.

As described in chapter 2, a user program may contain up to three tasks, “MVT”, UCT and FCT task.
Only the “MVT task is mandatory. UCT and FCT are cyclic. FCT is cycled at 500 µs whereas UCT is
cycled at the cycle time given by the user in the project configuration. The MVT task is executed
continuously in background. The Gem Drive kernel is multitask and schedules all tasks
simultaneously.

Some of the language instructions are forbidden in the cyclical tasks, like the blocking statements. But
the MVT task accepts all language instructions. In the next sections, the authorized tasks will be
indicated for each instruction.

Each task is edited in a single file in Gem Drive Studio and is recognized by the compiler according to
its extension: “.mvt” for MVT, “.uct” for UCT and “.fct” for FCT task.

2. User program organization
The edition of the various task files must follow some principles:

 The user variables must be defined in the MVT task

 Subroutines can be defined only in the MVT task

 Subroutines must be defined after variable declaration and before the main program

 Programs start with “begin” and finish with “end” keywords

 24

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Figure 2-1: MVT program structure.

Figure 2-2: FCT and UCT program structure

(* User Variable Declaration *)
var

 …

d

(* Optional Subroutines Definiton *)

MyFunction1(…)
 begin

 …

 end

MyFunction2(…)
 begin

 …

(* Main Program *)

 begin

 …

 end

(* Main Program *)

 begin

 …

 end

 25

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

3. Programming language instruction list

Instruction Language syntax : IEC 1131-3
Comment (* ... *) : Multilines

Data Type Signed Long 32 bits
Constant • Decimal

• Hexadecimal : 0x / 0X…

Blok begin .. end
Variables and alias Explicit declaration at the beginning of a « MVT » task.

Possibility to define a user alias to a specific drive parameter or
a user variable.

Variable can be simple or mono-dimensional array

var
(* Alias *)

MyVar1=ControlW; MyVar2=0x6041,0

x; y (* User Variables *)

MyVar3=Uvar17 (* An other Alias *)

Tab1[size1]; Tab2[size2] (* Array *)

Tab3[size3]

…

end_var

Array Access : Tab1[expression]

Access to the drive
parameters

Drive parameters may be accessed by EEDS Mnemonic, by user
Alias or by their Index/SubIndex address:

ap(Index, SubIndex)
Parameters of remote devices can be accessed by:

 Read : rdo(devAddress, Index, SubIndex)

 Write : wdo(devAddress, Index, SubIndex, Size)
Assignment :=
Arithmetic Operator - ; + ; - ; * ; / ; mod
Relational Operators = ; <>

> ; >= ; < ; <=

Shift Operators shl ; shr
Bit Handling Operators and ; or ; xor ; not

clr ; set ; tgl ; tst

 26

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Conditional statement if Expression then
 Instruction / Instructions Set

elseif Expression
 Instruction / Instructions Set

else
 Instruction / Instructions Set
end_if

Loop statement • while Expression do
 Instruction / Instructions Set
end_while

• for InitExpression to Expression
 [by Value] do
 Instruction / Instructions Set

end_for

Program Flow Control • return
• exit
• goto label

label :

• halt

Special Statements • wait until Expression
• delay(ms)
• start_fct ; stop_fct
• start_uct ; stop_uct
• uvsave ; uvrestore

Math Functions • abs(expression)
• sqrt(expression)
• sin(expression)
• cos(expression)
• atan(expression)

Subroutines Declaration :
MyFunction(argument1, argument2…)

 Begin
 …

 end
Call:

MyFunction(param1, param2…)

 Table 3-1: Programming language instruction list.

 27

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4. Programming language reference
This section describes all what the programming language offers the user to make an application
program. For each instruction, syntax, detailed description and examples will be given to help the user
to get up quickly programming the drive.

4.1. Comment
For more readability, the user can write explanation notes in his program. Comments are used for this
purpose. They can be placed everywhere in the program and are ignored by the compiler. A comment
is multiline. It starts by “(*” and ends by “*)”.

Example:

 (* This is a multiline comment
 to describe something... *)

 Figure 4-1: Comment syntax.

4.2. Data Type
Since the drive parameter type is Integer, the language data type is a Signed Long 32 Bits. The float
data type is not used.

4.3. Constants
The programmer can use constant numbers in the program operations. They are Signed Long 32 Bits
values. A constant can be written as a decimal or hexadecimal value. Hexadecimal values must be
prefixed by “0x” or “0X”.

4.4. User Variables
The user program is structured around variable handling. Variables are meaningful names that
represent data in a program. A value or a calculation result can be assigned to a variable by using
other variables.

These variables are called User Variables to distinguish them from the drive parameters which are
reserved keywords used by the drive to perform a specific task.

4.4.1 User Variable Naming
User variables can have any name as long as it is not a reserved keyword. They can have any length
allowing the user to give them a significant name. Nevertheless, names must begin with a letter or
underscore, followed by any alphanumeric characters.
Note: Lower and uppercase is to be taken into account, MyVar is different from myVAR.

 28

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.4.2 User Variable Type
Like the constants, all user variables are only Signed Long 32 Bit numbers. They are also global and
can be accessed from all tasks. The user can deal with up to 128 user variables in a program. That is
enough to develop more complex applications.

4.4.3 User Variable declaration
Unlike many implementations of BASIC language, variables must be declared previously to their use,
otherwise an error will be generated at their compilation. This is to avoid a wrong use of drive
parameter names as user variables.

A user variables declaration, as shown in “Figure 2-1: MVT program structure”, must be at the
beginning of a file. Variable declaration must be between “var” and “end_var” keywords (see
example).

Note: User variables are part of the EEDS file and have already defined EEDS mnemonic: UVarx,
where x is the number of a user variable in the range of 1 to 128. They have also a specific CANopen
object address at Index 0x3710, SubIndex 1..128 (0x1..0x80).

A user variable name can also be associated to any drive parameter or user variable EEDS mnemonic
or CANopen object address. This is referenced to ALIAS definition (see example of Figure 4-2).

(* User Variable Declaration *)
var

 (* Alias Definition *)
 offset_s=UVar1 (* Saved Offset Value *)
 pos_ref=0x3710,3
 offset_f=0x3710,2
 PGTacc=0x3514,3; PGTdec=0x3514,4
 PGProf_Vel=0x3514,2;
 PGTarget=0x3514,1;
 TopZ=0x3127,0;
 speed_res=0x310A,0; speed_enc=0x312A,0;
 DInput=0x60FD,0
 PLUS=0x3710,0x71
 MINUS=0x3710,0x72
 REG=0x3710,0x73
 run_command=0x3710,0x74
 reset_offset_memory=0x3710,0x75

 sStateMach; TopZ_Memory (* Allocation by the compiler *)
 teachArray[10] (* Array of 10 elements *)

end_var

 Figure 4-2: Variable declaration.

Remark: User variables are not initialized to zero at the program start, the user has to explicitly
make variable initialisation.

 29

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.4.4 Array Variable
A user variable can be simple, as described in the previous section, or a set of elements grouped in a
structure called "array". Nevertheless, the language is limited to a mono-dimensional array. Each
element is a numeric Signed Long 32 Bit. It can be used everywhere in expressions in the same way
as simple variables. Elements are referenced by an index number within brackets “[]“.

Example:

Offset_s := teachTab[0]
PGTarget := teachTab[2*i – 1] (* Assume i > 0 *)

Restriction: In cyclical tasks, array index must be a simple constant.

4.4.5 User Names Report
After Compilation, the compiler generates a variable binding structure which can be viewed by the
Gem Drive User Names Viewer tool (see Figure 4-3). It lists, for each defined user variable, the
associated EEDS mnemonic and the CANopen object address.

To open the User Names Viewer tool in Gem Drive Studio, the user can:

1. Simply click on a User Names icon in the project navigator,

Figure 4-3: User variables binding.

2. Select a Program: User Names Viewer menu (see above Figure) or

3. Use the following accelerator keys:

Alt P UThen

 30

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

The corresponding variable binding to the above example is shown in the following Figure:

 Figure 4-4: User variables binding example.

As we can see, defined user offset_s is bound to UVar1 as specified by the user. Note that it
corresponds to object 0x3710,0x01, pos_ref to UVar3 and so on. SStateMach and TopZ_Memory,
since the user has left the compiler the responsibility to allocate them, are bound to the first free user
variables not yet allocated, i.e. UVar4 and UVar5.

Once a user variable defined in a MVT task, it can be used as operand of program operations
everywhere in all tasks. A variable may be accessed by its user name, EEDS mnemonic or object
address. So, in the example above, offset_f, Uvar2 and ap(0x3710, 0x02) designate the same
user variable.

The same identificators are also used to access a user variable in all Gem Drive Studio tools, i.e. a
dialog window and the oscilloscope which is very important for application debugging.

Care must be taken when using variables. Some parameters are protected from reading or writing.
The user must refer to the compiler error output and the EEDS parameters description to correct his
program. Care must also been taken when using operations between operands of different types, as
drive parameters can be of 16 or 32 Bits. Conversion is automatically made by the compiler.

 31

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.4.6 Local axis parameters versus remote device objects (SDO): ap,
rdo, wdo

ap keyword (Axis Parameter) is used to access local drive parameters or user variables via their
Index/SubIndex address. The user may also access to parameters of remote devices via CAN under
the SDO communication protocol. The following syntax is used to access those objects:

 Local drive parameters: ap(Index, SubIndex), the same for reading and writing.

 Remote device objects:

• Read: rdo(devAddress, Index, SubIndex)

• Write: wdo(devAddress, Index, SubIndex, Size)

Access to local axis parameters is controlled by the compiler, depending on there existence and
access type (see EEDS file) and possible errors are generated in Gem Drive Studio at compilation.
But access to remote device objects cannot be controlled by the compiler at compilation. Remote
access will generate a dynamic error at program execution if one of the following conditions is not
fulfilled:

 Remote devices must have devAddress as address regarding the CAN addressing,

 Object Index/SubIndex must exist

 Remote object access must be complying with its access type and

 Object Size must be correct, relating to the SDO communication protocol. Thus, Size can take:

• 1: one Byte data

• 2: two Bytes data

• 4: four Bytes data

• 0: when the user does not know the object size or when the remote device,
accepts SDO transfer without data size indication (see CANOpen SDO
protocol).

When this error occurs, the error bit in the user program status word is set and the “Remote SDO
Access Error” bit is set in the User Program Error word.

Remark: The Gem Drive accepts SDO transfer without data size indication, so the user can access
remote drive parameters just by using 0 as Size value (see example).

Example:

(* Read a local parameter *)
x := ap(0x6041, 0)
(* Write a local parameter *)
ap(0x6040, 0) := 0
(* Read Object (0x6700,0) from node 3 (CAN Address) *)
y := rdo(3, 0x6700, 0)
(* Write Object (0x8100,0)of node 3 *)
wdo(3, 0x8100, 0, 2) := 0x0F

http://www.infranor.fr//products.htm
http://www.infranor.fr//products.htm

 32

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.5. Assignment
Assignment lets the user transfer a value to a user variable or parameter. This is made by using a “:=”
symbol. A value can be just a simple constant, a variable or a result of a complex calculation.

Variables must be declared previously to their use.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Restriction: In cyclical tasks, operations must not exceed one operation whereas there is no
restriction for MVT task, i.e. in MVT, the assignment can be the result of a complex calculation, while
in cyclic tasks, operations are limited to one arithmetic operation. The value to be assigned must be
constant, variable or the result of a simple operation between a simple constant or a variable, like:

dest := constant
dest := src1
dest := src1 opt src2

src1 and src2 are any constant or variable. opt is any operator of table 4.7-1.

4.6. Saving / Restoring user variables

These statements are used to save and restore a number of user variables. By giving n as input
parameter, user variables Uvar1 to Uvarn will be saved/restored. As these statements take some
delay to be done, they are forbidden in cyclical tasks.

 MVT UCT FCT

Valid Tasks Yes No No

(* Save the n first user variables *)
uvsave(n)
uvrestore(n)

 33

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.7. Language Operators
GDL provides a wide range of relational and mathematical operators to construct more or less
complex expressions. Table 4.7.1 lists all these operators.

+ - * / Arithmetic operators

- Unary minus

mod Modulo

= Equals

<> Different

> Greater than

< Lower than

>= Greater than or equal to

<= Lower than or equal to

and Bitwise AND

or Bitwise OR

xor Bitwise exclusive OR

not Unary NOT

shl Left shift

shr Right shift

clr Bit clear

set Bit set

tgl Bit toggle

tst Bit test

 Table 4.7-1: GDL operators' list

4.7.1 Arithmetic Operators
Arithmetic operators are unary +, – and binary +, -, *, -, / and mod operators. All operations are
Signed Long 32 Bits. Expressions are evaluated from left to right respecting the following precedence
laws:

 Binary +, - < Binary *, /, mod < Unary +, - < (,)
Use “(“ and “)” to force precedence as they have the highest priority.

For example, 2+5*6 will evaluate to 32 where (2+5)*6 will evaluate to 42.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Restriction: In cyclical tasks, operations must not exceed one operation whereas there is no
restriction for MVT task.

 34

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.7.2 Comparison Operators
Comparison operators are used to make tests for conditional statements with respect of the following
priority:

 =, <> < >, >=, <, <= < Arithmetic Operators

Thus, expression “pos - 100 > positiveLimit” evaluates as “(pos – 100) > positiveLimit”.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Restriction: In cyclical tasks, operations must not exceed one operation whereas there is no
restriction for MVT task.

4.7.3 Bits Handling
These operators allow the user to manipulate variable Bits.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Restriction: In cyclical tasks, operations must not exceed one operation while there is no
restriction for MVT task.

4.7.3.1. Bitwise Operators
Bitwise operations are made by and, or and xor operators. So, masks can be used to test, set, clear
or toggle some Bits of a variable.

For example:

Output := Output or 0x0F

Will set the four first Bits, while

wait until Input and 0x11

Will pause the program until Input Bits 0 and 4 are set.

A bitwise xor or exclusive or takes two bit patterns of equal lengths and performs the logical xor
operation on each pair of corresponding bits. The result in each position is 1 if the two bits are
different, and 0 if they are the same.

The bitwise xor may also be used to toggle flags in a set of bits. By giving a bit pattern, Bits
corresponding to the bit pattern containing 1 will be toggled simultaneously.

 35

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Example:

0101 xor 0011 = 0110 (* In Binary Representation *)

Toggles Bits 0 and 1.

Remark: For more clearness, the “=” symbol gives here just the result of the operation and must not
be confused with “=” or “:=” GDL language symbols.

4.7.3.2. Operator NOT
A logical not is a unary operator which performs boolean negation on its operand. As specified in
IEC 1131-3, this operator is a "logical or boolean not". It treats the entire value as a Boolean value,
changing a false value, i.e. 0, to true, i.e. 1, and not null values to false (0).

This operator must not be confused with the "bitwise not" operator which performs the ones'
complement or logical negation of the given binary value, i.e. bit 0 becomes 1 and vice versa. Unlike
many other languages, this operator is not implemented in GDL. The user can actually make a “bitwise
not” operation by using the xor operator with–1valueas a pattern.

Example:

not 0 = 1
not 1234 = 0
0101 xor –1(decimal) = 1010 (* In Binary Representation *)

4.7.3.3. Shift Operators
Shift operators allow the user to move or shift Bits to the left or right. This is an arithmetic shift. The
bits that are shifted out of either end are discarded. Zeros are shifted in on the right, in the case of a
left arithmetic shift (shl); in the case of a right arithmetic shift (shr), copies of the sign bit are shifted in
on the left.

Example:

MyVar1 := Offset shl 2
MyVar2 := Inputs shr 3

In the first case, the two leftmost bits were shifted past the end of the binary variable value, and a new
0 was shifted into the two rightmost positions. In the second case, the three rightmost bits were shifted
out, and a variable sign bit was copied into the three leftmost positions, preserving the sign of the
variable. Thus, using a 8-bit binary value will give following results:

 10110110 shl 1 = 01101100
 10110110 shr 1 = 11011011
 00110110 shr 1 = 00011011

A left arithmetic shift by n is equivalent to multiplying by 2n, while a right arithmetic shift by n is
equivalent to dividing by 2n and rounding towards zero.

 36

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.7.3.4. Single Bit Handling
These operators allow the user to access a single bit in a variable. He can use set operator to set,
clr to clear, tgl to toggle or tst to test a single bit in a variable. Their syntax is as follows:

 opt(destination, BitNumber) where opt = set, clr, tgl or tst

BitNumber is the number of the bit to be handled. It ranges from 0 to 31.

Example:

opt(MyVar, 2) (* Bit 2 *)
(* Where opt = set, clr, tgl *)
if tst(Input, 5) then
 ...

Restriction: In the MVT task, the bit number can be the result of any calculation. The destination
can also be a local user or parameter variable or a remote device object. But in the cyclical tasks, the
bit number can only be a constant or variable and the destination must be local.

4.8. Conditional Statement: if_then_else

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Conditional or commonly called “if_then_else” statement, is used to execute a statement block
depending on a conditional expression.

if condition_expression then
 true_statement_block

[else (* Optional *)
 false_statement_block]
end_if

First, the boolean “condition_expression” is evaluated. If the condition is true, the statements
true_statement_block up to the optional else are executed. Otherwise, the execution continues
in the false_statement_block if the else block is present. In all cases, the execution will continue
in the statements following the end_if keyword.

if_then_else statement can be nested, allowing the user to structure his application code as
needed.

 37

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Example 1:

if pos < lowerLimit then
 DOutput := DOutput or 0x40
 Offset_s := lowerLimit - pos

else if pos > upperLimit then
 DOutput := DOutput or 0x80
 Offset_s := upperLimit - pos

else
 DOutput := DOutput and 0xFFFFFF3F
 Offset_s := 0

end_if

Restriction: Care must be taken when using this statement in the cyclical tasks:

 The “condition_expression” must be a simple conditional operation, i.e. only one
operation.

 Statement block may not exceed one operation.

 Nesting is not allowed, use goto statement to pass round this constraint, see the next example.

Example 2:

vTmp := StatusW and 0x221
if vTmp <> 0x221 then
 goto pNext
end_if

if DInput = 0 then
 goto pNext

end_if

if DInput = 0x01 then
 pos := pos + vPLUS

else
 pos := pos - vMINUS

end_if

if pos < lowerLimit then
 goto lowLimit

else
 goto upLimit

end_if

lowLimit:
DOutput := DOutput or 0x40
Offset_s := lowerLimit – pos
goto pNext

upLimit:
if pos <= upperLimit then
 goto noOffset

end_if

DOutput := DOutput or 0x80
Offset_s := upperLimit – pos
goto pNext

 38

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

noOffset:
DOutput := DOutput and 0xFFFFFF3F
Offset_s := 0

pNext:
...

4.9. Iteration Statement (Loop): while, for

 MVT UCT FCT

Valid Tasks Yes No No

Loop statements let you execute a statement block as long as a conditional expression is true. There
are two kinds of loops, the first is a count-controlled-loop. The second one is a condition-controlled-
loop.

In both cases, nesting is allowed without any restriction. You can also combine these statements as
you need.

4.9.1 Count Controlled Loop
In the count-controlled-loop, the block is executed a number of a given count:

for init_expression to end_expression
 [by step_expression] do
 statement_block

end_for

Count starts at init_expression and ends at end_expression which are more or less complex
expressions evaluated to integer value. If init_expression is greater than end_expression
and by expression is discarded, the statement block is no more executed.

The by expression lets the user give a step by which the count is increased. After each loop iteration,
the step_expression is evaluated and added to the count until the end_expression is reached. Note
that if the step_expression is negative then count is rather decreased, hence the count will decrement
from init_expression to end_expression which must be lower than the first one. If the by
expression is not present, the count is incremented by default by one.

Example:

for i = 0 to 10 do
 wait until Dinput and 0x01
 teachTab[i] := pos
 wait until not(Dinput and 0x01)

end_for

for i = 15 to 1 by -2 do
 myTab[i] := 1 shl i

end_for

 39

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.9.2 Condition Controlled Loop
In the condition-controlled-loop, the block is executed while a conditional expression is true:

While condition_expression do
 statement_block

end_while

“condition_expression” is a boolean expression which can be made by relational operators for
example and evaluated first. As long as its value is true, the “statement_block » is executed.

A “forever” loop can be implemented by an infinite loop in which the condition is always true.
Remember that you have to foresee break conditions to prematurely terminate the execution of the
“statement_block ». The user has to use the “exit“ statement for this purpose.

 Example:

while DInput and 0x01 do
 ...

end_do

(* FOREVER Loop *)
while 1 do
 ...

 if exit_condition then
 exit

 end_if

 ...
end_do

4.10. Flow Control instructions: exit, goto label, return, halt
The program is executed in a sequential way. Statements are executed one after the other in the order
of there appearance in the program. Flow control statements are used to modify this execution flow of
the program.

4.10.1 "exit" statement
The “exit” keyword is used to force the termination of a loop. It is generally used in combination with
the “if” statement (see example above). Note that in nested loops, it will terminate the execution of the
inner loop only.

 MVT UCT FCT

Valid Tasks Yes No No

 40

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.10.2 "goto label" statement
The goto statement is an unconditional transfer of control. The flow control continues at statement
appearing immediately after the specified label.

A label is an explicit name which must respect the Identifier rules. It musts appear at the beginning of
a line and immediately be followed by a colon “:”.

goto label
...

 label: ...

Care is to be taken when using this statement, in loop statement for example. The destination label
must be also well controlled, as the branching cannot be made to anywhere in the program.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Example:

if pos > maximum_Pos then
 goto errHandling
end_if

...

errHandling:
(* Process error cases *)
set(DOutput, 1)
...

4.10.3 "return" statement
A return statement is used to leave the current subroutine and resume at the point where the
subroutine was called (see the function use in section 4.15). A value may be returned by this
statement to the caller if the function returns a value.

 MVT UCT FCT

Valid Tasks Yes No No

4.10.4 "halt" statement
A halt statement is used to stop the execution of the user program, i.e. to stop all tasks.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

 41

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Example:

if DInput and 0x01 then
 (* Some handling to do before halting the program *)
 myAtExitFunction()
 stop_fct
 stop_uct
 Doutput := 0x01
 halt
end_if

4.11. Wait a delay time
The delay statement is used for waiting a delay time. The program will pause for a given number of
milli-seconds.

 MVT UCT FCT

Valid Tasks Yes No No

Example:

(* wait 2000 ms *)
delay(2000)

4.12. Wait until Condition
Wait_until statement stops the program until a specified condition is true. This is useful for program
synchronisation. Condition can be any boolean expression which evaluates to true or false.

 MVT UCT FCT

Valid Tasks Yes No No

Example:

(* wait for a position value *)
wait until pos > 8000

(* wait a rising edge of an input *)
wait until not(Dinput and 0x01)
wait until Dinput and 0x01

 42

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.13. Start / Stop cyclical tasks
User can start or stop a cyclical task by using these statements.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

start_fct
stop_fct
start_uct
stop_uct

4.14. Math functions
Some useful math functions are implemented in GD1 to meet the application needs.

 abs
 sqrt
 sin
 cos
 atan

As GD1 does not use floating numbers, the input and output of all these functions are integer values.
For trigonometric functions, as explained below, a special scaling must be done when interpreting the
values.

4.14.1 ABS
This function returns the absolute value of a given number.

Parameter:

 Any valid expression valuated to a Signed Long 32 Bits number.

 Value Range: -2147483648 .. 2147483647

Return value:

 The absolute value of the input parameter.

 Value Range: 0 .. 2147483647

Example:

(* Absolute value *)
MyVar := abs(-32000) (* 32000 *)
offset := abs(CurrentPos * 2)

 43

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.14.2 SQRT

This function returns the square root of a given number.

Parameter:

 Any valid expression valuated to an Unsigned Long 32 Bits number.

 Value Range: 0 .. 4294967295 (0xFFFFFFFF)

Return value:

 The square root value of the input parameter.

 Value Range: 0 .. 65535 (0xFFFF)

Example:

(* sqrt function *)
x := sqrt(9) (* 3 *)
speed := sqrt(CurrentSpeed * filter) / 2

4.14.3 SIN
This function returns the sine of a given value.

Parameter:

 Any valid expression valuated to a Signed Integer 16 Bits number.

 Even though the input value is a long value, only the first 16 bits are valid.

 Value Range: -32768 (0x8000) .. 32767 (0x7FFF)

 This value range corresponds to the angle range -π..+π

Return value:

 The sine of the input parameter.

The returned value is a signed Integer 16 bits value corresponding to the range –1 to +1. So
the result must be scaled.

As the type of the user variables is signed long 32-bits, when the result is assigned to a
variable or is used in an arithmetic expression, the sign is extended to 32 bits signed value
(see example below).

 Value Range: -32768 .. 32767

Example:

(* sine function *)
x := sin(0) (* x = 0 *)

y := sin(0x7FFF) (* Input=+π; y = 0 *)
z := sin(0x3FFF) (* Input=+π/2; z = 0x7FFF corresponding to +1 *)
t := sin(0xBFFF) (* Input=-π/2; Result = 0x8000 extended to
 0xFFFF8000 corresponding to –1 *)

 44

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.14.4 COS

This function returns the cosine value of a given value.

Parameter:

 Any valid expression valuated to a Signed Integer 16 Bits number.

 Even though the input value is a long value, only the first 16 bits are valid.

 Value Range: -32768 (0x8000) .. 32767 (0x7FFF)

 This value range corresponds to the angle range -π..+π

Return value:

The cosine value of the input parameter. The returned value is a signed Integer 16 bits value
corresponding to the range –1..+1. So the result must be scaled.

As the type of the user variables is signed long 32-bits, when the result is assigned to a
variable or is used in an arithmetic expression, the sign is extended to 32 bits signed value
(see example below).

 Value Range: -32768 .. 32767

Example:

(* cosine function *)
x := cos(0) (* x = 0x7FFF : Corresponds to +1 *)

y := cos(0x3FFF) (* Input=+π/2; y = 0 *)
z := cos(0x7FFF) (* Input=+π; Result = 0x8000 extended to
 0xFFFF8000 corresponding to -1 *)

t := cos(0x8000) (* Input=-π; t = 0xFFFF8000 *)

4.14.5 ATAN
This function returns the arc tangent of a given number.

Parameter:

Any valid expression valuated to a Signed Long 32-Bits number. The input parameter is in the
16.16 format having 16 bits of scalar and 16 bits of fraction.

The scalar part (High 16-bits) corresponds to the integer value of the input parameter. With
16-bits in this part, we can represent 216 (65536) discrete values (-32768 to +32767 signed
values).

The fractional part gives again 216 steps to represent the values from 0 to almost 1,
specifically, 0 to 65535/65536 or approximately 0.99999. The fractional resolution is 1/65536,
or about 0.000015.

 45

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Return value:

 The arc tangent of the input parameter.

 The returned value is a signed Integer 16 bits value corresponding to the range -π..+π. So the
result must be scaled.

As the type of the user variables is signed long 32-bits, when the result is assigned to a
variable or is used in an arithmetic expression, the sign is extended to 32 bits signed value
(see example below).

 Value Range: -32768 .. 32767

Example:

(* atan function *)
x := atan(0) (* Input= 0.0 ⇒ x=0 *)

y := atan(0x10000) (* Input= 1.0 ⇒ y=0x00001FFF π/4 *)
z := atan(0xFFFF0000) (* Input=-1.0 ⇒ z=0xFFFFE001 -π/4 *)
t := atan(0x000093CC) (* Input= 0.57735 ⇒ t=0x00001555 π/6 *)
u := atan(0xFFFF6C34) (* Input=-0.57735 ⇒ u=0xFFFFEAAB -π/6 *)
v := atan(0x7FFFFFFF) (* Input= 32767.99999 ⇒ v=0x00004000 π/2 *)
w := atan(0x80000000) (* Input=-32767.99999 ⇒ w=0xFFFFC000 -π/2 *)

4.15. Main block: Begin, End
As shown in figures 2-1 and 2-2, a task main program starts with begin and ends with end keywords.

 MVT UCT FCT

Valid Tasks Yes Yes Yes

Example:

(* User Variable Declaration *)
var

 (* Alias Definition *)
 offset_s=UVar1 (* Saved Offset Value *)
 pos_ref=0X3710,3

 sStateMach; TopZ_Memory (* Allocation by the compiler *)

end_var

begin
 (* Variables initialisation *)
 offset_s := 100
 sSTateMach := 0
 ...
end

 46

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

4.16. Function: Definition, call, arguments, parameters, return

In an MVT task the user can structure a larger program by defining subroutines or functions and then
using them in the program main block.

Functions must be defined first in the beginning of the program, i.e. before their use (see example
below).
The functions must be labelled with the same rules as for an identifier, i.e. must start with an
alphabetic character followed by a number of alphanumeric characters. “_” can be used also
anywhere in the name. The name must be then followed by “()“ to differentiate it from a variable
name. The function name must not be a user variable name, a parameter name or any keyword,
otherwise the compiler will generate an error message.

Optionally, a function may have parameters as inputs and returns a calculation result. Their data type
is signed long values.

Input parameters are a list of variable names located between “(“ and “)” and separated by comas “,”.
These variables can then be used only in the block of the defined function. Note that user defined
variable and drive parameters are global and can be used anywhere in the program. Hence they can
serve to transfer data between the various functions.

When a function returns a value, return statement should be used. A value is transferred to the caller.

Once a function defined, it can be called in the main block. This is done just by calling the function
name followed by “()“. Arguments must be given between parenthesis if the called function is defined
with input parameters. The number of parameters must be the same as in the definition.

If the function returns a value, the result can be assigned to a variable by the caller as in the example
or used in an expression.

 47

Gem Drive – Programming Guide

Chapter 3 – Elements of the Programming language: IEC 1131-3

Example:

(* User Variable Declaration *)
var
 index
 filter
 tab1[10]
 tab2[10]
end_var

(* Function without parameters *)
init()
begin
 DOutput := 0
 ControlW := 0
end

(* Function that returns square *)
square(n)
begin
 return n*n
end

(* Function with parameters *)
setFilter(a, b, c)
begin
 filter := square(a) + square(b) + square(c)
end

(* Main Block *)
begin
 init()

 setFilter (1, 2, 3)

 index := 1
 while index <= 10 do
 tab1[index] := square(index)
 tab2[index] := square(index) + (tab1[index] * filter)
 index := index + 1

 end_while

 ...
end

	Contents
	Chapter 1. Gem Drive Programming
	1. Introduction
	2. Programming structure
	2.1. Fast Cyclical Task: FCT
	2.2. User Cyclical Task: UCT
	2.3. MoVement Task: MVT

	Chapter 2. Integrated Development Environment
	1. Introduction
	2. Project management
	3. Programming environment interface
	3.1. File Menu Commands
	3.2. Edit Menu Commands
	3.3. View Menu Commands
	3.4. Program Menu Commands
	3.5. Autocompletion

	4. Drive parameters: EEDS, Mnemonic, Index/SubIndex
	5. Make a new user program
	Step 1: Create a New User Program
	Step 2: Edit and Add Project Source Files
	Step 3: Customize the user program configuration
	Step 4: Build and correct a User Program: Program Compilation
	Step 5: Load the generated building output into the drive
	Step 6: Start the program execution
	Step 7: Finally, monitor the program execution

	Chapter 3. Elements of the programming language: IEC 1131-3
	1. Overview
	2. User program organization
	3. Programming language instruction list
	4. Programming language reference
	4.1. Comment
	4.2. Data Type
	4.3. Constants
	4.4. User Variables
	4.4.1 User Variable Naming
	4.4.2 User Variable Type
	4.4.3 User Variable declaration
	4.4.4 Array Variable
	4.4.5 User Names Report
	4.4.6 Local axis parameters versus remote device objects (SDO): ap, rdo, wdo

	4.5. Assignment
	4.6. Saving / Restoring user variables
	4.7. Language Operators
	4.7.1 Arithmetic Operators
	4.7.2 Comparison Operators
	4.7.3 Bits Handling
	4.7.3.1. Bitwise Operators
	4.7.3.2. Operator NOT
	4.7.3.3. Shift Operators
	4.7.3.4. Single Bit Handling

	4.8. Conditional Statement: if_then_else
	4.9. Iteration Statement (Loop): while, for
	4.9.1 Count Controlled Loop
	4.9.2 Condition Controlled Loop

	4.10. Flow Control instructions: exit, goto label, return, halt
	4.10.1 "exit" statement
	4.10.2 "goto label" statement
	4.10.3 "return" statement
	4.10.4 "halt" statement

	4.11. Wait a delay time
	4.12. Wait until Condition
	4.13. Start / Stop cyclical tasks
	4.14. Math functions
	4.14.1 ABS
	4.14.2 SQRT
	4.14.3 SIN
	4.14.4 COS
	4.14.5 ATAN

	4.15. Main block: Begin, End
	4.16. Function: Definition, call, arguments, parameters, return

